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Currency Exchange

You can convert some currencies into some
others with given exchange rates. What is
the maximum amount in Russian rubles you
can get from 1000 US dollars using unlimited
number of currency conversions? Is it
possible to get as many Russian rubles as
you want? Is it possible to get as many US
dollars as you want?



Arbitrage

By John Shandy - Own work, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=15743307


USD RUREUR GBP NOK

0.88 0.84 8.08

1 USD → 0.88 · 0.84 · . . . · 8.08 RUR
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Maximum product over paths

Input: Currency exchange graph with
weighted directed edges ei between
some pairs of currencies with
weights rei corresponding to the
exchange rate.

Output: Maximize
∏︀k

j=1 rej = re1re2 . . . rek
over paths (e1, e2, . . . , ek) from
USD to RUR in the graph.



Reduction to shortest paths

Use two standard approaches:
Replace product with sum by taking
logarithms of weights

Negate weights to solve minimization
instead of maximization
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Taking the Logarithm

xy = 2log2(x)2log2(y) = 2log2(x)+log2(y)

xy → max⇔ log2(x) + log2(y)→ max

4× 1× 1
2 = 2 = 21

log2(4)+ log2(1)+ log2(
1
2) = 2+0+(−1) = 1

k∏︁
j=1

rej → max⇔
k∑︁

j=1

log(rej )→ max
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Reduction

Finally: replace edge weights rei by
(− log(rei )) and find the shortest path
between USD and RUR in the graph.



Solved?

Create currency exchange graph with
weights rei corresponding to exchange
rates

Replace rei → (− log(rei ))
Find the shortest path from USD to
RUR by Dijkstra’s algorithm
Do the exchanges corresponding to the
shortest path
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Where Dijkstra’s algorithm goes
wrong?

Dijkstra’s algorithm relies on the fact
that a shortest path from s to t goes
only through vertices that are closer
to s.

This is no longer the case for graphs
with negative edges:

S
A

B

5

10
-20



Where Dijkstra’s algorithm goes
wrong?

Dijkstra’s algorithm relies on the fact
that a shortest path from s to t goes
only through vertices that are closer
to s.
This is no longer the case for graphs
with negative edges:

S
A

B

5

10
-20



Currency exchange example

RUR

EUR

USD

0.013

0.015

1.16

0.013× 1.16 = 0.01508 > 0.015



Currency exchange example

RUR

EUR

USD

6.2653

6.0589

-0.214

0.013× 1.16 = 0.01508 > 0.015



Negative weight cycles
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d(S ,A) = d(S ,B) = d(S ,C ) = d(S ,D) = −∞

In currency exchange, a negative cycle can
make you a billionaire!
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Naive algorithm

Remember naive algorithm from the
previous lesson?

Relax edges while dist changes
Turns out it works even for negative
edge weights!
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Bellman–Ford algorithm
BellmanFord(G , S)

{no negative weight cycles in G}
for all u ∈ V :

dist[u]←∞
prev[u]← nil

dist[S ]← 0
repeat |V | − 1 times:

for all (u, v) ∈ E:
Relax(u, v)



Running Time
Lemma
The running time of Bellman–Ford algorithm
is O(|V ||E |).

Proof

Initialize dist — O(|V |)

|V | − 1 iterations, each O(|E |) —
O(|V ||E |)
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Lemma
After k iterations of relaxations, for any node
u, dist[u] is the smallest length of a path
from S to u that contains at most k edges.



Proof

Use mathematical induction

Base: after 0 iterations, all dist-values
are ∞, but for dist[S ] = 0, which is
correct.
Induction: proved for k → prove for
k + 1
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Proof

Before k + 1-th iteration, dist[u] is the
smallest length of a path from S to u

containing at most k edges

Each path from S to u goes through
one of the incoming edges (v , u)
Relaxing by (v , u) is comparing it with
the smallest length of a path from S to
u through v containing at most k + 1
edge
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Corollary

In a graph without negative weight cycles,
Bellman–Ford algorithm correctly finds all
distances from the starting node S .

Corollary

If there is no negative weight cycle reachable
from S such that u is reachable from this
negative weight cycle, Bellman–Ford
algorithm correctly finds dist[u] = d(S , u).
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Negative weight cycles

Lemma
A graph G contains a negative weight cycle
if and only if |V |-th (additional) iteration of
BellmanFord(G , S) updates some
dist-value.



Proof

⇐ If there are no negative cycles, then
all shortest paths from S contain at
most |V | − 1 edges (any path with
≥ |V | edges contains a cycle, it is
non-negative, so it can be removed
from the shortest path), so no
dist-value can be updated on
|V |-th iteration.



Proof

⇒ There’s a negative weight cycle, say
a→ b → c → a, but no
relaxations on |V |-th iteration.

dist[b] ≤ dist[a] + w(a, b)

dist[c] ≤ dist[b] + w(b, c)

dist[a] ≤ dist[c] + w(c, a)

w(a, b) + w(b, c) + w(c, a) ≥ 0 —
a contradiction.
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Finding Negative Cycle
Algorithm:

Run |V | iterations of Bellman–Ford
algorithm, save node v relaxed on the
last iteration

v is reachable from a negative cycle
Start from x ← v , follow the link
x ← prev[x ] for |V | times — will be
definitely on the cycle
Save y ← x and go x ← prev[x ] until
x = y again
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Is it possible to get as many rubles as you
want from 1000 USD?

Not always, even if there is a negative cycle
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EUR

GBP
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1.16

0.013
0.8

12.5

0.11

Cannot exchange USD into rubles via
(negative) cycle EUR → GBP → NOK.



Is it possible to get as many rubles as you
want from 1000 USD?
Not always, even if there is a negative cycle

USD

RUR

EUR

GBP

NOK

1.16

0.013
0.8

12.5

0.11

Cannot exchange USD into rubles via
(negative) cycle EUR → GBP → NOK.



Outline

1 Currency Exchange

2 Bellman–Ford algorithm

3 Proof of Correctness

4 Negative Cycles

5 Infinite Arbitrage



Detect Infinite Arbitrage

Lemma
It is possible to get any amount of currency u
from currency S if and only if u is reachable
from some node w for which dist[w ]
decreased on iteration V of Bellman-Ford.



Proof
(⇐)

S
w

x

yz

u

dist[w ] decreased on iteration V ⇒ w is
reachable from a negative weight cycle

w is reachable ⇒ u is also reachable ⇒
infinite arbitrage
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Proof
(⇒)

Let L be the length of the shortest path
to u with at most V − 1 edges

After V − 1 iterations, dist[u] is equal
to L

Infinite arbitrage to u ⇒ there exists a
path shorter than L

Thus dist[u] will be decreased on some
iteration k ≥ V



Proof
(⇒)

Let L be the length of the shortest path
to u with at most V − 1 edges
After V − 1 iterations, dist[u] is equal
to L

Infinite arbitrage to u ⇒ there exists a
path shorter than L

Thus dist[u] will be decreased on some
iteration k ≥ V



Proof
(⇒)

Let L be the length of the shortest path
to u with at most V − 1 edges
After V − 1 iterations, dist[u] is equal
to L

Infinite arbitrage to u ⇒ there exists a
path shorter than L

Thus dist[u] will be decreased on some
iteration k ≥ V



Proof
(⇒)

Let L be the length of the shortest path
to u with at most V − 1 edges
After V − 1 iterations, dist[u] is equal
to L

Infinite arbitrage to u ⇒ there exists a
path shorter than L

Thus dist[u] will be decreased on some
iteration k ≥ V



Proof
(⇒ continued)

If edge (x , y) was not relaxed and
dist[x ] did not decrease on i -th
iteration, then edge (x , y) will not be
relaxed on i + 1-st iteration

Only nodes reachable from those relaxed
on previous iterations can be relaxed
dist[u] is decreased on iteration
k ≥ V ⇒ u is reachable from some
node relaxed on V -th iteration
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Detect Infinite Arbitrage

Do |V | iterations of Bellman–Ford, save
all nodes relaxed on V -th iteration —
set A

Put all nodes from A in queue Q
Do breadth-first search with queue Q
and find all nodes reachable from A

All those nodes and only those can have
infinite arbitrage
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Reconstruct Infinite Arbitrage

During Breadth-First Search, remember
the parent of each visited node

Reconstruct the path to u from some
node w relaxed on iteration V

Go back from w to find negative cycle
from which w is reachable
Use this negative cycle to achieve
infinite arbitrage from S to u
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the parent of each visited node
Reconstruct the path to u from some
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Use this negative cycle to achieve
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Conclusion

Can implement best possible exchange
rate
Can determine whether infinite arbitrage
is possible
Can implement infinite arbitrage
Can find shortest paths in graphs with
negative edge weights
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