
Advanced Shortest Paths:
A-star Algorithm (A*)

Michael Levin
Higher School of Economics

Graph Algorithms
Data Structures and Algorithms

https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT


Outline

1 Directed Search

2 Bidirectional A*

3 Lower Bounds

4 Landmarks



Bidirectional Search



Directed Search



Potential Function

Take any potential function 𝜋(v)

mapping vertices to real numbers.

It defines new edge weights
ℓ𝜋(u, v) = ℓ(u, v)− 𝜋(u) + 𝜋(v)

Replacing ℓ by ℓ𝜋 does not change
shortest paths



Potential Function

Take any potential function 𝜋(v)

mapping vertices to real numbers.
It defines new edge weights
ℓ𝜋(u, v) = ℓ(u, v)− 𝜋(u) + 𝜋(v)

Replacing ℓ by ℓ𝜋 does not change
shortest paths



Potential Function

Take any potential function 𝜋(v)

mapping vertices to real numbers.
It defines new edge weights
ℓ𝜋(u, v) = ℓ(u, v)− 𝜋(u) + 𝜋(v)

Replacing ℓ by ℓ𝜋 does not change
shortest paths



Lemma
For any potential function 𝜋 : V → R, for
any two vertices s and t in the graph and
any path P between them,
ℓ𝜋(P) = ℓ(P)− 𝜋(s) + 𝜋(t).



Proof
P : s = v1 → v2 · · · → vk = t

ℓ𝜋(P) =
k−1∑︁
i=1

ℓ𝜋(vi , vi+1) =

= ℓ(v1, v2)− 𝜋(v1) + 𝜋(v2)+

+ ℓ(v2, v3)− 𝜋(v2) + 𝜋(v3)+

+ . . .+

+ ℓ(vk−2, vk−1)− 𝜋(vk−2) + 𝜋(vk−1)+

+ ℓ(vk−1, vk)− 𝜋(vk−1) + 𝜋(vk) =

=
k−1∑︁
i=1

ℓ(vi , vi+1)− 𝜋(v1) + 𝜋(vk) =

= ℓ(P)− 𝜋(s) + 𝜋(t)



Dijkstra with Potentials
Take some potential function 𝜋

Launch Dijkstra algorithm with edge
weights ℓ𝜋
The resulting shortest path is also a
shortest path initially
Does any 𝜋 fit us?
For any edge (u, v), the new length
ℓ𝜋(u, v) must be non-negative — such 𝜋

is called feasible



Dijkstra with Potentials
Take some potential function 𝜋

Launch Dijkstra algorithm with edge
weights ℓ𝜋

The resulting shortest path is also a
shortest path initially
Does any 𝜋 fit us?
For any edge (u, v), the new length
ℓ𝜋(u, v) must be non-negative — such 𝜋

is called feasible



Dijkstra with Potentials
Take some potential function 𝜋

Launch Dijkstra algorithm with edge
weights ℓ𝜋
The resulting shortest path is also a
shortest path initially

Does any 𝜋 fit us?
For any edge (u, v), the new length
ℓ𝜋(u, v) must be non-negative — such 𝜋

is called feasible



Dijkstra with Potentials
Take some potential function 𝜋

Launch Dijkstra algorithm with edge
weights ℓ𝜋
The resulting shortest path is also a
shortest path initially
Does any 𝜋 fit us?

For any edge (u, v), the new length
ℓ𝜋(u, v) must be non-negative — such 𝜋

is called feasible



Dijkstra with Potentials
Take some potential function 𝜋

Launch Dijkstra algorithm with edge
weights ℓ𝜋
The resulting shortest path is also a
shortest path initially
Does any 𝜋 fit us?
For any edge (u, v), the new length
ℓ𝜋(u, v) must be non-negative — such 𝜋

is called feasible



Intuition
𝜋(v) is an estimation of d(v , t) — “how
far is it from here to t?”
If we have such estimation, we can often
avoid going wrong direction — directed
search
Typically 𝜋(v) is a lower bound on
d(v , t)

I.e., on a real map a path from v to t

cannot be shorter than the straight line
segment from v to t



A* ≡ Dijkstra
On each step, pick the vertex v

minimizing dist[v ]− 𝜋(s) + 𝜋(v)

𝜋(s) is the same for all v , so v

minimizes dist[v ] + 𝜋(v) — the most
promising vertex
𝜋(v) is an estimate of d(v , t)
Pick the vertex v with the minimum
current estimate of d(s, v) + d(v , t)

Thus the search is directed



Performance of A*
If 𝜋(v) gives lower bound on d(v , t)

Worst case: 𝜋(v) = 0 for all v — the
same as Dijkstra
Best case: 𝜋(v) = d(v , t) for all v —
then ℓ𝜋(u, v) = 0 iff (u, v) is on a
shortest path to t, so search visits only
the edges of shortest s − t paths
It can be shown that the tighter are the
lower bounds — the fewer vertices will
be scanned



Outline

1 Directed Search

2 Bidirectional A*

3 Lower Bounds

4 Landmarks



Bidirectional A*

Same as Bidirectional Dijkstra, but with
potentials
Needs two potential functions: 𝜋f (v)
estimates d(v , t), 𝜋r(v) estimates
d(s, v)

Problem: different edge weights:
ℓ𝜋f (u, v) = ℓ(u, v)− 𝜋f (u) + 𝜋f (v),
ℓ𝜋r (u, v) = ℓ(u, v)− 𝜋r(v) + 𝜋r(u)



Bidirectional A*

We need ℓ𝜋f (u, v) = ℓ𝜋r (u, v) ⇒
𝜋f (u) + 𝜋r(u) = 𝜋f (v) + 𝜋r(v) for any
(u, v)

Need constant 𝜋f (u) + 𝜋r(u) for any u

Use pf (u) =
𝜋f (u)−𝜋r (u)

2 , pr(u) = −pf (u)

Then pf (u) + pr(u) = 0 for any u



Lemma
If 𝜋f is a feasible potential for forward
search, and 𝜋r is a feasible potential for
reverse search, then pf =

𝜋f−𝜋r
2 is a feasible

potential for forward search.



Proof

ℓ(u, v)− 𝜋f (u) + 𝜋f (v) ≥ 0

ℓ(u, v)− 𝜋r(v) + 𝜋r(u) ≥ 0
2ℓ(u, v)− (𝜋f (u)− 𝜋r(u)) + (𝜋f (v)−
𝜋r(v)) ≥ 0
ℓ(u, v)− 𝜋f (u)−𝜋r (u)

2 + 𝜋f (v)−𝜋r (v)
2 ≥ 0

ℓ(u, v)− pf (u) + pf (v) ≥ 0



Proof

ℓ(u, v)− 𝜋f (u) + 𝜋f (v) ≥ 0
ℓ(u, v)− 𝜋r(v) + 𝜋r(u) ≥ 0

2ℓ(u, v)− (𝜋f (u)− 𝜋r(u)) + (𝜋f (v)−
𝜋r(v)) ≥ 0
ℓ(u, v)− 𝜋f (u)−𝜋r (u)

2 + 𝜋f (v)−𝜋r (v)
2 ≥ 0

ℓ(u, v)− pf (u) + pf (v) ≥ 0



Proof

ℓ(u, v)− 𝜋f (u) + 𝜋f (v) ≥ 0
ℓ(u, v)− 𝜋r(v) + 𝜋r(u) ≥ 0
2ℓ(u, v)− (𝜋f (u)− 𝜋r(u)) + (𝜋f (v)−
𝜋r(v)) ≥ 0

ℓ(u, v)− 𝜋f (u)−𝜋r (u)
2 + 𝜋f (v)−𝜋r (v)

2 ≥ 0
ℓ(u, v)− pf (u) + pf (v) ≥ 0



Proof

ℓ(u, v)− 𝜋f (u) + 𝜋f (v) ≥ 0
ℓ(u, v)− 𝜋r(v) + 𝜋r(u) ≥ 0
2ℓ(u, v)− (𝜋f (u)− 𝜋r(u)) + (𝜋f (v)−
𝜋r(v)) ≥ 0
ℓ(u, v)− 𝜋f (u)−𝜋r (u)

2 + 𝜋f (v)−𝜋r (v)
2 ≥ 0

ℓ(u, v)− pf (u) + pf (v) ≥ 0



Proof

ℓ(u, v)− 𝜋f (u) + 𝜋f (v) ≥ 0
ℓ(u, v)− 𝜋r(v) + 𝜋r(u) ≥ 0
2ℓ(u, v)− (𝜋f (u)− 𝜋r(u)) + (𝜋f (v)−
𝜋r(v)) ≥ 0
ℓ(u, v)− 𝜋f (u)−𝜋r (u)

2 + 𝜋f (v)−𝜋r (v)
2 ≥ 0

ℓ(u, v)− pf (u) + pf (v) ≥ 0



Outline

1 Directed Search

2 Bidirectional A*

3 Lower Bounds

4 Landmarks



Lemma
If 𝜋 is feasible, and 𝜋(t) ≤ 0, then
𝜋(v) ≤ d(v , t) for any v



Proof

ℓ𝜋(x , y) ≥ 0 for any x , y , so ℓ𝜋(P) ≥ 0
for any path P

Take a v − t shortest path
P = (v ,w1,w2, . . . ,wk , t)

0 ≤ ℓ𝜋(P) = ℓ(P)− 𝜋(v) + 𝜋(t) ≤
ℓ(P)− 𝜋(v) ⇒ 𝜋(v) ≤ ℓ(P) =

d(v , t)



Euclidean Potential

Lemma
Consider a road network on a plane map with
each vertex v having coordinates (v .x , v .y).
The potential given by Euclidean distance
(length of a line segment) between v and t

𝜋(v) = dE (v , t) =√︀
(v .x − t.x)2 + (v .y − t.y)2 is feasible,

and 𝜋(t) = 0.



Proof

For any edge (u, v) ∈ E ,
ℓ(u, v) ≥ dE (u, v), because line
segment is the shortest path between
two points on a plane

𝜋(u) = dE (u, t) ≤(triangle inequality)

dE (u, v) + dE (v , t) ≤ ℓ(u, v) + 𝜋(v) ⇒
ℓ(u, v)− 𝜋(u) + 𝜋(v) ≥ 0
𝜋(t) = dE (t, t) = 0



Proof

For any edge (u, v) ∈ E ,
ℓ(u, v) ≥ dE (u, v), because line
segment is the shortest path between
two points on a plane
𝜋(u) = dE (u, t) ≤(triangle inequality)

dE (u, v) + dE (v , t) ≤ ℓ(u, v) + 𝜋(v) ⇒
ℓ(u, v)− 𝜋(u) + 𝜋(v) ≥ 0

𝜋(t) = dE (t, t) = 0



Proof

For any edge (u, v) ∈ E ,
ℓ(u, v) ≥ dE (u, v), because line
segment is the shortest path between
two points on a plane
𝜋(u) = dE (u, t) ≤(triangle inequality)

dE (u, v) + dE (v , t) ≤ ℓ(u, v) + 𝜋(v) ⇒
ℓ(u, v)− 𝜋(u) + 𝜋(v) ≥ 0
𝜋(t) = dE (t, t) = 0



A* on a Plane Map

Need to find the shortest path from s to
t

For each v , compute 𝜋(v) = dE (v , t)

Launch Dijkstra with potentials 𝜋(v)



Outline

1 Directed Search

2 Bidirectional A*

3 Lower Bounds

4 Landmarks



Landmarks

Lemma
Fix some vertex A ∈ V , we will call it a
landmark. Then the potential
𝜋(v) = d(A, t)− d(A, v) is feasible, and
𝜋(t) = 0.



Proof

ℓ(u, v)− 𝜋(u) + 𝜋(v) = ℓ(u, v)−
d(A, t) + d(A, u) + d(A, t)− d(A, v) =

d(A, u) + ℓ(u, v)−
d(A, v) ≥(triangle inequality) 0
𝜋(t) = d(A, t)− d(A, t) = 0



Landmarks

Select several landmarks and
precompute their distances to all other
vertices
For any landmark A,
d(v , t) ≥ d(A, t)− d(A, v),
d(v , t) ≥ d(v ,A)− d(t,A)

Tightest lower bound d(v , t) ≥
max(d(A, t)−d(A, v), d(v ,A)−d(t,A))

over all A



Landmark Selection

Good landmark appears “before” v or “after”
w :

For any query (s, t), we need some
landmarks before s and after t



Landmark Selection
Choosing landmarks on the border seems
reasonable:



Landmark Selection
Choosing landmarks on the border seems
reasonable:



Conclusion
Directed search can scan fewer vertices
A* is a directed search algorithm based
on Dijkstra and potential functions
A* can also be bidirectional
Euclidean distance is a potential for a
plane (road networks)
Landmarks can be used for good
potential function, but we need
preprocessing to use them


	Directed Search
	Bidirectional A*
	Lower Bounds
	Landmarks

